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Abstract. The factorisation method is used to analyse the motion of wavepackets in 
symmetric, confining, one-dimensional reflectionless potentials. We calculate the quantal 
time advance and compare it to the classical limit. It  is proven that the broadening of 
wavepackets is delayed when they move over the potential well. 

1. Introduction 

The quantum mechanical motion of a particle in a given potential is a rather general 
problem. It is well known that a comparison between the quantal motion and the 
corresponding classical motion is difficult in the following sense: almost every 
wavepacket will split into a reflected and a throughgoing part when scattered at a 
potential. Therefore, the classical concept of a particle moving in a certain direction 
cannot be applied to the quantal motion in an arbitrary potential. Reflectionless 
potentials, however, do not disperse wavepackets by breaking them into two or more 
pieces. This property of reflectionless potentials makes it easier to compare quantal 
and classical motion. 

There is no general technique to find analytic solutions of the time-dependent 
Schrodinger equation. In some cases, however, the factorisation method (Infeld and 
Hull 1951) can be a tool to find such time-dependent solutions analytically. There is 
another technique, the Darboux method (Darboux 1882), which is closely related to 
the factorisation method, and which was recently investigated in great detail by Sukumar 
(1989, Gaveau and Schulman (1986), Englefield (1987) and Humi (1987). 

When it comes to physics, the complete set of time-dependent solutions is used for 
working out (Crandall 1983) the time-dependent propagator of the Schrodinger 
equation. Another quantity of interest is the quantal time advance which has been 
guessed (Crandall and Litt 1983) to be always less than its classical analogue. Surpris- 
ingly enough, the dispersion of wavepackets which move in reflectionless potentials 
has not been investigated in the literature. 

The motivation for writing this paper is due to three new and, as we hope, interesting 
results: 

( i )  whenever the factorisation method works, the propagator can be determined 
in a straightforward way ( 5  2); 

(ii) the quantal time advance can exceed the classical value ( 5  3); and 
(ii i)  the broadening of wavepackets is always delayed in comparison with a free 

motion ( 5  4). 
The last result is the most important one, because it means that reflectionless 

potentials transfer some coherence to every wavepacket as it moves over the potential. 
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2. Time-dependent propagator 

In order to apply the factorisation method to the time-dependent Schrodinger equation 
we proceed in the following way: we decompose the Hamiltonian H into a pair of 
adjoint time-independent operators 1, I' in the following manner: 

H = l + l + E o  (1) 

i h d  = H3, (2) 

l+p = 3, (3) 

IQ = i h+ - E,Q. (4) 

i h d  = (U++ E o ) q  ( 5 )  

where Eo is a constant. Then the Schrodinger equation for Q, 

is equivalent to the following set of equations: 

Eliminating tL from this set of equations, we obtain the Schrodinger equation for cp: 

As usual, the dot denotes the derivative with respect to time. 
A frequently discussed example is obtained by choosing 

1 
1 = - (ip + hp tanh p x )  G 

wherep is the one-dimensional momentum operator. One also chooses Eo = -( 
and finds that cp satisfies the Schrodinger equation for a free particle. At the same 
time 3, is a solution of the Schrodinger equation with the Hamiltonian H = p2/2m + V, 
where V is the following reflectionless potential (Gaveau and Schulman 1986, Crandall 
and  Litt 1983): 

h' 2 p z  V = - -  
2m cosh'px'  ( 7 )  

Reflectionless potentials have been treated in detail in the literature. It is known that 
there exists exactly one symmetric, reflectionless potential for a given finite set of 
bound-state energies (Schonfeld et a1 1980). Furthermore, algorithms have been found 
to compute such potentials. Quigg and Rosner (1981) used such algorithms to construct 
reflectionless approximations to confining potentials. 

In the following we restrict ourselves to normalisable states 4 and cp since we are 
interested in the dynamics of (normalisable) wavepackets. Let us consider the case 
where I is given by equation (6). From equation (3) we find that cp can be expressed 
uniquely in terms of 3, because the homogeneous equation l'cp = 0 only- has solutions 
cp - cosh(px) which cannot be normalised and  which, therefore, d o  not contribute to 
the mapping of 3, on cp. In other words, for normalisable wavepackets equation (3) 
can be inverted at any time to 

cF!t,) = b+$( t* )  (8) 
and the operator b+ exists. Since we know the time-dependent propagator Po( t ,  to)  for 
a free particle, we can calculate the time evolution of c p ( t ) :  

c p ( f )  = Po(t, t o ) c p ( t o ) .  ( 9 )  

By means of equation (3) we then express + ( t )  in terms of p(t). 
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There is, however, one normalisable eigenstate rLtr of H such that lcL0 = 0. As shown 
by Infeld and Hull (19511, 

(xid/n)=(/3/2)i’2 (cosh @xi- ’  (10) 

is the (only) bound state of H with energy Eo= -(h/3)’/2m. By use of equation (4)  
we can determine the state p0 which corresponds to $o. The result is (x lp, , ( t ) )= 
c exp( -iEot/ A ) ,  where c is undetermined. Because of equation (5), such a state is not 
normalisable except for c = 0. Since we consider normalisable states only, we conclude 
that will be mapped on the null state of the free-particle problem. We therefore 
must treat separately by projecting Go out of $. Instead of equation (8) we then have 

@ ( t o )  = b’(1 - l $ o ) ( c L ~ ~ l ) ~ ( ~ ” ) .  ( 1 1 )  

(12) 

The second term in equation (12) describes the time evolution of the t,bo component 
of cL. We are now in a position to write down the propagator of the Schrodinger 
equation ( 2 ) :  

P(f, t o ) =  l+Po(t, to)b’(l - I c L o ) ( $ o l ) + l ~ o ) ( c L o l  exp[-i(Eo/A)(t- t o l l .  (13) 

In coordinate representation we have 

From equations (3) ,  (81, (9) and ( 1  1) we obtain 

cL( t )  = l+po( t, t d b + (  1 - I $o)($o/)$( t o )  + $n($o/ $( t o ) )  exp[-i(Eo/ A t - t o ) ] .  

) 
m ( x  - xr)*  ( 2 n i h ( t - t o )  )”exp(- 2i h ( t - to) Po(x, t I x’, t o )  = 

and 

(xlb’( 1 - /$o)(cLol)/x’) = (1/ h)(m//3)”’[e’P‘O(x’-x) - eCP‘O(x - X ‘ ) ] $ ~ ( X ’ )  ( 1 5 )  

where O(x) is the unit step function. Inserting (14) and (15 )  into the coordinate 
representation of (13 )  leads to the result of Crandall and Litt (1983) who obtained the 
propagator by summing explicitly over the complete set of eigenstates of H. Figure 1 
summarises graphically the method of how to determine the ‘difficult’ propagator P 
in terms of the known propagator Po. 

f 
b* i 
W:) - $ ( t i  

P [ f ,  to i 

Figure 1. Construction scheme for the propagator P ( f ,  t o ) :  instead of going directly from 
the lower left to the lower right corner,  a more convenient bypass can be found by means 
of the factorisation method (13).  For simplicity the diagram represents the case where the 
initial wavepacket has  no overlap with the bound state: (tbLol$( t o ) )  = 0. 
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3. Time advance of the mean position 

In this section we investigate the properties of a wavepacket 4 moving in the potential 
V (equation (7)). The Schrodinger equation then becomes 

The Hamiltonian of equation (16) is factorised by (3) and (4), with 1 from equation 
(6). Inserting (6) into (3) yields 

(17) 

Any solution of the time-dependent free-particle Hamiltonian will be transformed 
through (17) to a solution of (16). 

In the following we assume 

$ = ( l / f i ) (  -ip + h p  tanh p x ) ~ .  

(CPlQ) = 1. (18) 

From the last two equations we see that ($14) is time independent but not normalised 
to unity. The expectation value of an operator L calculated for a wavepacket 4 is 
given by 

From equation (17) it follows that the wavepacket J, behaves like a free particle far 
away from the potential V. Asymptotically we have 

* = -AQ for px << - 1 (20) 

+ = A'Q for px >> +1 (21) 

with 

A = ( l / f i ) ( i p  + h p ) .  

We see that the asymptotic limit (21) can be obtained from (20) by a unitary transfor- 
mation 

U = -A+A-' .  (23) 

With the same reasoning as in § 2 we can show that the inverse to A exists, if again 
only normalised solutions are allowed. Far away from the reflectionless potential we 
can evaluate all expectation values by using equations (20) and (21). For example, 
we obtain 

A free particle has the property 

d j+= dxcp*(x, t)p"cp(x, t ) = O .  
dt  --oo 



Delayed broadening in reflectionless scattering 2957 

Therefore ( p " )  is a conserved quantity for \fix\ >> 1. This means that ( p " )  assumes the 
same value in front of and  behind the scatterer. 

Let 

+ ( k ,  t ) = -  dx cp(x, t )  exp( -ikx) A J-: 
vanish for k s 0, i.e. 

@ ( k ,  t ) = O  for k S 0. ( 2 6 )  

Equation ( 2 6 )  corresponds to a situation where all momentum components of cp(x, t )  
move from the left to the right. From equation ( 2 0 )  it then follows that sl/ is incident 
from the left, too. At a great distance from the scatterer the Ehrenfest theorem (see, 
e.g., Merzbacher 1961) tells us that (x) = 0. In elastic scattering the asymptotic expecta- 
tion value p = = ( ( p )  ( n  = 1 in ( 2 4 ) )  is a conserved quantity. Integrating ( x ) = O  twice 
with respect to time yields 

(x) = p,t/ m + xo (27 )  

where xo is an integration constant, which will be different in the two asymptotic 
domains pxZ1.  According to equation ( 2 0 )  we can write 

whereas from ( 2 1 )  we have 

Subtracting the two equations yields 

The time advance T is the amount of time by which the mean position of the 
scattered wavepacket +b is ahead of its freely evolved counterpart ( p  = 0). In the 
asymptotic region px  >> 1 we obtain from (28c )  

Expression ( 2 9 )  is, in the case of equation ( 7 ) ,  equivalent to equation (4 .7 )  of Crandall 
and Litt (1983).  

As an  example of ( 2 9 )  we consider a wavepacket $(x, 0) given in terms of cp(x, 0). 
At t = 0, the initial state cp is chosen to have the coordinate representation 

Here d is sufficiently large to make sure that the particle starts from the far left at  
t = O .  In  the k representation the initial wavefunction (30 )  is 
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Figure 2. Comparison between the quantal time advance T of a wavepacket (30) and the 
classical time advance T ~ , ~ ~ ,  of a particle moving in the cosh-’ px potential. The reference 
time is = m / h p ’ .  

Equation ( 3 1 )  obeys equation ( 2 6 ) .  All momentum components of the wavepackets 
cp and, because of (20), also of 8 move from the left to the right. The time advance 
7 and the expectation value pc are given by 

The time advance T ~ , ~ ~ ~  of a classical particle moving in the potential V (equation ( 7 ) ) ,  
and having the same incident momentum pJc as the wavepacket, follows from the 
classical equations of motion: 

Figure 2 compares the classical time advance with the quantal expression. We see that 
there exists a region where 

7class < T. ( 3 5 )  
Equation ( 3 5 )  shows that the conjecture of Crandall and Litt ( 1 9 8 3 ) ,  0 < r < T ~ , ~ ~ ~ ~  does 
not hold true in general. 

4. Time delay of the uncertainty product AxAp 

A measure of the broadening of a wavepacket is the product of the uncertainties in 
the position and the momentum. In general, wavepackets contain momenta k having 
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different signs and running in opposite directions. This leads to dispersion which we 
do  not want to deal with. We therefore let $ ( p ,  t )  = O  for p s 0 .  In  this case the 
wavepackets r(l move from the left to the right. 

We consider now symmetric reflectionless potentials V ( x )  = V (  -x ) ,  with asymptotic 
values V(*cc) = 0. These potentials are uniquely determined by their bound-state 
energies (Quigg and Rosner 1981) 

Far away from the scattering potential the wavepacket & corresponds to a free particle. 
The initial wavepacket is connected with the scattered wavepacket by the transmission 
coefficient T ( p )  (Deift and  Trubowitz 1979, Crandall and Litt 1983) 

Now assume that the particle has been scattered and  moves freely again. Then the 
Ehrenfest theorem for (Ax)’ and (Ap)’ can be used together with equation ( 2 0 )  to 
determine AxAp for t + W. The calculation is similar to the calculation of (x) in the 
preceding section. The result is 

A x ~ p = 2 ( E , - p ~ / 2 m ) [ ( t - t l ) ’ + t t ] ’  ’ (38) 

with E ,  = ( H ) .  The integration constants t l ,  t z  of the scattered wavepacket differ from 
those of the freely evolved facsimile of the initial wavepacket. Hence, for t + c c  the 
uncertainty product of the scattered wavepacket lags a time t ,  = fl.,caIIered - f l , ,nc,dent 

behind the freely evolved wavepacket. Because of ( 2 4 )  and ( 2 5 )  the uncertainty Ap is 
the same for the scattered and for the freely evolved wavepackets. In order to calculate 
t A  it is useful to determine ( A ~ ) f , , , , , , , , - ( A x ) f ~ , , ~ ~ , , .  This task is simplified by going 
into the momentum representation and by taking into account equation (37);  it means 

)Incldent holds true. After 
some algebraic manipulations and by noting (38) we get 
that for any operator L the relation (L)scatrered - - ( e - 1 4 ( P l ~  e 1 4 ( P )  

The expectation value in (39) can be evaluated both with the incident and with the 
scattered wavepacket. This fact is due to (37). In the case of very long monoenergetic 
wavepackets we have E , + p L / 2 m  and 1’HBpital’s rule must be applied to (39). By 
means of (37 )  we can show that the derivative of @ with respect to p ,  @ ’ ( p ) ,  increases 
monotonically with p 2 O .  Using this property, it is easy to see that t ,  is always a 
positive quantity. 

For the purpose of illustration, let us take the previously discussed wavepacket 
(30), scattered by the potential (7). We then obtain 

ti vanishes for cy = 0 and a + CC, and has a maximum for cy = p / J E .  In figure 3 the 
asymptotic values of the uncertainty product, equation (381, are plotted for the incident 
wavepacket ( i )  and the scattered wavepacket (s) .  The scattering at the potential causes 
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-1 .2 0 1 . 2  1.8 
t /Tp 

Figure 3. Asymptotic behaviour of the uncertainty product AxAp, plotted for a wavepacket 
moving in the cosh-> px potential. The asymptote i refers to the incident wavepacket and 
the asymptote s refers to the scattered wavepacket. As in figure 2 we have used the 
wavepacket (30) with a = p .  The change from i to s is schematically indicated by an arrow, 
and it occurs when the wavepacket passes through the potential. 

the change from curve i to curve s. We conclude that the broadening of the uncertainty 
product is reduced as long as the wavepacket passes through the scattering region. 

In this context let us make a few remarks about one-dimensional crystals (V(x)  = 
V(x-L)),  where delayed broadening is also possible. A maximum delay of the 
broadening will occur if there is a k interval where the energy E ( k )  depends linearly 
on k 

E ( k )  = h ( k - ko) U for k , < k < k , .  (41) 

Then, Bloch waves &(x, t )  with k values in the interval k ,  s k s k2 can be used to 
construct wavepackets which move through the crystal. From the properties of the 
Bloch waves we derive the following relation for such wavepackets: 

$(x - L, t - L / u )  = exp(-ikoL)IL(x, t ) .  (42) 

Equation (42) means that these special wavepackets move as coherent states (Perelomov 
1986) through the crystal. Their motion is unbounded, in contrast to the motion 
described by the usual coherent Glauber state (Glauber 1963a, b)  in a harmonic 
potential. 

In the real world we have to deal with three dimensions. Let us consider a 
three-dimensional superlattice (see Kelly and Weisbuch (1986) for example), which 
we assume to be homogeneous in the y and z directions with V(x, y ,  z) = V(x). If 
V(x) is the same periodic potential as discussed above, then the broadening of 
wavepackets will be delayed in the x direction. In  the y and z directions there will 
be the usual broadening of a free motion-unless we apply a static homogeneous 
magnetic field in the x direction. In this case the magnetic field will make both AyAp, 
and AzAp, an oscillating function of time. Under these circumstances a three- 
dimensional wavepacket can propagate along the magnetic field direction with little 
(or even no) broadening. 
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5. Conclusion 

Equation (17) relates a time-dependent solution $ ( x ,  1 )  of the reflectionless Schrodinger 
equation to a time-dependent solution q ( x ,  t )  of the free Schrodinger equation. Starting 
from this relation we derived the general expression (29) for the quantal time advance. 
By means of an example we demonstrated that the quantal time advance is not always 
less than the classical time advance, as surmised in the literature (Crandall and Litt 
1983). 

In order to gain insight into the quantum mechanical motion we studied the time 
evolution of the uncertainty product AxAp.  For a free particle this uncertainty product 
diverges for t + OC, because then the corresponding free wavepacket has completely 
dispersed. We found that the increase of the uncertainty product A x A p  of an  asymptoti- 
cally free wavepacket is delayed relative to the free (zero-potential) motion. This delay 
happens as the wavepacket moves over the potential well. We also showed that coherent 
non-dispersing wavepackets can move through crystals, if the energy E (  k )  depends 
linearly on k in some finite k interval. 

The results of this paper could be useful in the context of quantum transport. For 
example, a superlattice (Kelly and Weisbuch 1986) made by many reflectionless 
potentials in a row would help fast electrons to stay ballistic for a longer time. 
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